
The Double Points of Mathieu's 
Differential Equation 

By G. Blanch and D. S. Clemm 

Abstract. Mathieu's differential equation, y" + (a - 2q cos 2x)y 0, admits of 
solutions of period xr or 27r for four countable sets of characteristic values, a(q), 
which can be ordered as aT(q), r = O, 1, *. The power series expansions for the 
ar(q) converge up to the first double point for that order in the complex plane. [At 
a double point, ar(q) = ar+2(q).] The present work furnishes the double points for 
orders r up to and including 15. These double points are singular points, and the 
usual methods of determining the characteristic values break down at a singular 
point. However, it was possible to determine two smooth functions in which one 
could interpolate for both q and ar(q) at the singular point. The method is quite 
general and can be used in other problems as well. U 

1. Introduction. Mathieu's differential equation 

(1.0) y" + (a-2q cos 2x)y = 0 

admits of four countable sets of characteristic values, ar(q), corresponding to which 
the solutions y(x) are periodic, and of period wr or 27r. These four sets are associated 
with solutions defined below. 

00 

(1.10) y(q,a2m,x)= EA2kosi2kx, a=a2m(q),m=1, , 1, 

k=1 

00 

(1.13l) uy(q, a2+ 1, X ) = A2k+1 COS (2k + 1)x, a = a2m+l(q), m = 0, 1, *.. 
k=O 

oo 

(1.12) u(q, b2m, X) = BUksinL 2kx , a = b2mn m =1, 2, . . *, 
k=1 

(1.13) u(q, b2tn+ly Xc) =JE B27,+lsin (2k +f 1)x, a = b2m+1) m = O, 1, 
k=O0 

When q = 0, ar(q) = br(q) = r2, r = O,1, ... , and the corresponding solutions 
are y(q, r2, x) = cos rx, u(q, r2, x) = sin rx.* If q 0 0, the four sets of eigenvalues 
are distinct, and there is only one periodic solution corresponding to a characteristic 
value. The second, independent solution of (1.0), associated with the eigenvalue, 
is not periodic. 

If- q is real and different from zero, it is known that the eigenvalues are all real 
and simple. They can be ordered as follows: 

ao < bi < a, < b2, < ** q > ? 
ao < a, < bi < b2l < . . . 

q < ?0 

Received June 14, 1968. 
* If r - 0, sin rx is a trivial solution; the odd solutions begin with r = 1. 

97 



98 G. BLANCH AND D. S. CLEMM 

If q is real, the sets {ar(q) } and {br(q) } are characterized by (1.14) and (1.15) 
below: 

(1.14) The solutions y(q, a,, x), u(q, b,, x) have r zeros in the interval 0 < x < r 

(1.15) As q -> 0, ar(q) -> r2, br(q) -* r2-valid in the complex q-plane . 

Another important property is given in (1.2); it holds in the complex q-plane. 

(1.2) a27(-q) = a2m(q); b2m(-q) = b2m(q); a2m+l(-q) = b2m+l(q). 

Power-series expansions for the characteristic values, as functions of q, were 
first developed by Mathieu [4]. An algorithm, suitable for computers, by means of 
which one may obtain the successive coefficients of the power series has been given 
in [6]. The radii of convergence of these power series, however, remained largely 
unknown since these depend on a knowledge of the double points (singular points) 
in the complex plane. The present work supplies these singular points for orders 
r < 15. 

Mulholland and Goldstein [5] published the first multiple eigenvalue. They 
found that for imaginary q, namely q = is, there is a singular point at s = 1.468 ... 

where ao(q) and a2(q) have a common value. [It can be shown that, aside from the 
origin, double points can arise only between members of the same set; there can be 
no double points connecting orders of different sets.] The value of a(q) at the singular 
point, however, was obtained in [5] only in the order of magnitude. These authors 
noted that ao and a2 are real up to the singular point, and become complex conjugates 
of each other after the singular point. They conjectured that if q is purely imaginary, 
similar situations will hold for a4m and a4m+2, for all m, and for b2m+2 and b2m+4. [It 
should be noted that the eigenvalues of odd order have no singular points on the 
900-ray.] 

Bouwkamp [2] verified and improved the first singular point, giving s = 

1.468769, but he gave the value of a(q) to only 3 decimals, namely a = 2.088. The 
value of a(q) at a singular point is indeed difficult to obtain by the methods em- 
ployed by the authors cited. In the method to be explained below this difficulty 
disappears. Moreover, the procedure is general and is applicable to other problems 
as well. 

From (1.0) and (1.2), it is sufficient to determine a(q) and the singular points 
for values of q in the first quadrant of the complex plane. For, if ar(q) and br(q) are 
known for q = p exp (iq), then ar(-q) is known from (1.2). Moreover, an examina- 
tion of (1.0) shows that ar(q), [or br(q)], when associated with y(q, ar, x), 
[or u(q, br, x)] satisfies (1.0) when q is replaced by q. Hence, in what follows, define 

(1.3) q= pei 0 < p? 900; ar(q) = ar(p,k). 

[Values on the real axis will not be discussed, since they are amply tabulated, and 
there are no multiple eigenvalues, except when q = 0.] 

2. Auxiliary Functions, Useful near a Singular Point. The continued-fraction 
method formed the basis for the present calculations. A full discussion of the method 
is given in [1]. In addition, a comprehensive code now exists [3] for obtaining all 
solutions of Mathieu's equation, including the eigenvalues, for q > 0. A part of this 
code was modified to operate with complex arithmetic. Certain other modifications 
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were necessary, since one could no longer assume that all eigenvalues are simple 
ones. For the sake of conciseness, the derivation of the particular continued fraction 
forms will not be repeated here. The availability of [1] will be assumed and only the 
necessary modifications will be explained below. 

In essence, there is a complex-valued function, say T(a, q), such that, a necessary 
and sufficient condition for a(q) to be an eigenvalue is that T(a, q) = 0. The order, 
r, is not determined. It is obtained from continuity beginning with the eigenvalue 
for p = 0, where the order is known and continuing at an interval, Ap, (for a fixed 0) 
which is sufficiently small for adequate extrapolation of a first approximation. In the 
discussion to follow, the symbols ar and ar(q) will be used to imply members of any 
one of the four sets, since the discussion applies equally well to those eigenvalues 
giving rise to odd solutions as to even solutions. In the few cases where a distinction 
between the two is made, the fact will be stated. For brevity let 

(2.01) To = T(a, q), T, = Ti(a, q) = aT(a, q)/aa, 
T2= T2(a, q) _ 2T (a, q)/,a2'. 

Assume that in the neighborhood of an eigenvalue, To, Ti, and T2 are continuous 
functions of a. [No assumptions are made about Ida/dpl or Ida/dqI; these do become 
infinite at a multiple eigenvalue.] It is shown in [1] that for real, positive values of q, 
I TI is bounded away from zero-indeed if q is positive, I Ti > l/q. In the complex 
plane, however, this is no longer true, since a double point is characterized precisely 
by To = T0 = 0. However, if one is not too close to a singular point, then it is 
possible to use Newton's method, the same as in the real case. Thus, let ark-l be a 
sufficiently close approximation to ar(q). Define 

(2.02) Aar k = - To(ark , q)/T(ar k-1, q) 

(2.03) ar k arki + Aark-1 

In practice, convergence to within a preset tolerance was obtained after four itera- 
tions or less in the great majority of cases; rarely were more than 9 iterations re- 
quired. Suitable precautionary tests have to be included to insure that the new 
approximation, ark, is within a reasonable distance from ar(p - h, 4), so as to insure 
that the approximation approaches the rth eigenvalue and no other. 

Consider the Taylor series for T(a, q), namely 

(2.04) T(a + Aa, q) = To + AaTi + 1(,Aa)2T2 + O(Aa)3 . 

Dropping terms in (Aa)3, and solving for a zero of T(a + Aa, q), one obtains 

(2.05) Aa -(Ti/J2) + o((T/T2)2 - (2To/T2))i/, o ?1. 

The approximation (2.05) is more suitable near a singular point than (2.03). Since 
the terms in (2.04) are in general complex numbers, the sign of a- is more difficult to 
determine than in the real case. Let 

(2.06) wl= ((T1/T2)2 - (2To/T2)) 1, 

assuming that one of the two values of the radical has been taken. Define 

(2.07) Aia = - (TI/T2) + wl I A2a = - (T1/T2) - w . 

If the iterative process is to converge, then eventually 1,AaI should approach zero. 



100 G. BLANCH AND D. S. CLEMM 

It is therefore reasonable to choose that value of Aa which is smaller in magnitude. 
The ambiguous case, when both values of Aa are equal in magnitude, occurs only 
in exceptional cases near a singular point. The method of dealing with it will be 
further discussed in Section 3. 

Consider (2.05) when 

(2.10) f Ti/T2 12 >>f2To/T2f| 

Let us factor (T1/T2)2 from the radical; in view of the assumption (2.10), the radical 
can be expanded by the binomial theorem and is in fact determined-again because 
we choose the smaller of the two possible values of 1 zAal. In this case (2.05) reduces 
to 

(2.11) Aa - (T1/T2) + (T1/T2) (1 -(2ToT2/ 
=-(To/T1) (1 + ( ToT2/ T12) + * 

It is clear that Aa of (2.11) differs little in nature from (2.02). This situation will 
be true in regions where IT, is sufficiently large. 

On the other hand, consider a region where 

(2.12) 12To/T21 >>? (Ti/T2)21 

Again factoring the numerically dominant term of the radical, one obtains 

(2.13) Aa =-(T1/T2) + o-(-2To/T2)12. (1 -(T12/ToT2))1"2. 

In (2.13) the behavior of Aa is radically different from that in (2.02). Whether or 
not the eigenvalue a(q) is a simple one, T(ak, q) must approach zero as ak approaches 
a(q). If a(q) is not a simple eigenvalue, T1 will also approach zero, in such a way that 
(1 - (T,2/ToT2))112 remains finite. The radical (-2To/T2)1/2 in (2.13) gives an in- 
sight into the behavior of a(q) near a singular point. Suppose ar(q) = ar+2(q). As 
the branches ar(q) and ar+2(q) are generated, the values T(ak, q) will tend to be the 
same, when the ak of the two branches approach each other-as they must. Let 

(2.14) w = (-2To/T2) 2. (1 -(T1/ToT2) )1/ 

assuming either choice of the radical. It is to be expected that if Ala = (-T1/T2) 
+ w is a suitable increment for ark(q), then A2a (-T1/T2) - w will be the corre- 
sponding increment for a4?2(q). 

It is important to observe the following: 
Near a singular point, the radical in (2.13) is eliminated in the functions (2.15) and 

(2.16) defined below. 

(2.15) FA(q) = 2(ar(q) + ar+2(q)) = FA1 + iFA2, say. 

(2.16) FB(q) = (ar+2(q) - ar(q))2 = FB1 + iFB2, say. 

The functions FA(q) and FB(q) are smooth in the neighborhood of the singular 
point, when T2 is smooth. They may have singularities elsewhere. For example, if 
ar(ql) also has a double point with ar2(ql), but not with ar+2(ql), then in the neigh- 
borhood of ql, FA and FB will mirror the singularities at this point, and they will 
not be smooth functions. However, the fact that both FA (q) and FB(q) are smooth 
near the singularity is of great importance in computation. For it permits us to by- 
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pass a region close to the singular point, and to obtain the value of q at which a(q) 
is singular by interpolation in a smooth function. In this way the double eigenvalue 
can be obtained to any preassigned accuracy. 

From a knowledge of FA(q) and FB(q), both ar(q) and ar+2(q) are determined, 
up to an ambiguity of the subscripts. Thus let 

(2.20) ar(q) = -c + id1, ar+2(q) = c2 + id2. 

Then 

(2.21) FA(q) = 1(ci + C2) + il(di + d2) =FA1 + iFA2, 

(2.22) FB(q) = (C2 - C1)2 - (d2- dl)2 + i2(c2 - cl)(d2-d1) = FB1 + iFB2. 

Three cases arise: 
Case 1. FB2 7? 0. Then (C2- ci) and (d2- di) are different from zero. 

Define 

(2.23) d2- d =X(C2 - cl). 

Substituting (2.23) into (2.22) one obtains 

(2.24) FB1 = (C2 - c1)2(j- X2), FB2 = 2X(c2 -Cl)2. 

Observe that X must have the sign of FB2. From (2.24) X is known; namely 

(2.25) X = - (FB1/FB2) + p(l + (FB1/FB2)2)12, p = i: 1 . 

Since the radical in (2.25) is always greater than IFB /FB21, the sign of X is the same 
as the sign of p. However, it has already been noted that X must have the sign of 
FB2. It follows that p is uniquely determined by the sign of FB2, and so is X. With 
X known, (2.22) yields 

(2.26) C2 -Cl = rg 

(2.27) d2 -d = rg, 

(2.28) g= (FB2/2X)1"2, r 41. 

From (2.26)-(2.28) and (2.21), one now obtains 

(2.30) ci = FA1 - -Tg, di= FA2 -2 TXg 

(2.31) c2=FA, + 1rg, d2 = FA2 + 1rXg 

It is clear from (2.30) and (2.31) that changing the sign of -r merely interchanges 
ar(q) and ar+2(q). 

Case 2. FB2(q) = 0. Either (C2 - cl) = 0 or else (d2 - di) = 0. Suppose FB1 7? 0. 
If FB1 < 0, the first equation of (2.22) shows that in this case (C2- cl) = 0. Simi- 
larly, if FB1 > 0, then (d2 - di) = 0. Thus 

If FB1 < 0, C2-cl = 0; d2 - d1 = r(-FB1)1/2. 
If FB1 > 0, d2-d1 = 0; C2 -Cl = r(FBi)1"2. 

One may again solve for Ck, dk, k = 1, 2, as in (2.30)-(2.31). 
Case 3. FBi(q) = FB2(q) = 0. This is a necessary and sufficient condition for 

a(q) to be a multiple eigenvalue. In this case ar(q) = ar+2(q) = FA (q). 

3. Method of Computation. Phase 1. This involved tabulation of ar(q) for 
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4 = 90'(-5')5', p < 100, r = 0(1)15. The interval, Ap, ranged between 0.1 and 
0.5, with the smaller intervals for low orders r. Along with ar(q) and ar+2(q), which 
were computed simultaneously, the functions FA(q) and FB(q), defined in (2.15)- 
(2.16), were also generated. This phase of the computations was performed with 
8-significant digit arithmetic, using an IBM 7094 computer. Since the power-series 
expansion for ar(q) converges for sufficiently small values of Iql, the code [3] was 
adequate in a region where Iql < 4h, h = Ap. Thereafter, for a fixed X, the extra- 
polation routine of [3] was used. From this point on modifications had to be intro- 
duced, as outlined below. 

Given an approximation ark(q), k = 0,1, * * , one obtained Toy T1, T2, as defined 
in (2.01). The next approximation depended on the magnitude, I T1J, as follows: 

Case (a). If I Tl > 0.1, the method of (2.02)-(2.03) was adequate. 
Case (b). If IT,1 < 0.1, formula (2.05) was used. It remains to be explained how 

of was chosen. For even orders on the 90?-ray, ar(q) is real up to the singular point 
connecting ar(q) and ar+2(q), and thereafter the two become complex conjugates of 
each another. The sign of the imaginary component was taken so that the values on 
the 90?-ray would be continuous with those obtained on a neighboring ray-taken 
here as 4 = 89.99?. [Actual computation of ar(q) on this ray was made within the 
computer, in the neighborhood of the point where an imaginary component began 
to enter.] It turned out that in all cases, the imaginary component of a4r(q) was 
negative, and that of a4r+2 positive, in the immediate neighborhood of the singu- 
larity. In the case of the eigenvalues associated with odd solutions of (1.0), b4r+2 

had a negative imaginary component and b4r+4 had the positive component. [In [5], 
the authors also assigned the same signs to the imaginary component in the few 
cases they treated, from considerations of the asymptotic behavior of the functions- 
namely the fact that on the real axis, ar > br+?. However, the asymptotic behavior 
beyond the singular point is not the same on the imaginary axis as it is on the real 
axis, and there is as yet no proof that the property in question holds on the imagi- 
nary axis.] 

On other rays, that value of Aa was chosen which gave the smaller magnitude 
of A Aal.* Ambiguity, when both values of I Aal were the same up to a pre-assigned 
tolerance, could occur only in the very close vicinity of a singular point. Since this 
first tabulation was a coarse grid in the complex plane and the singular points form 
only a countable set, the probability of ambiguity was small. An indication of any 
ambiguity was read out for further examination and one additional test was per- 
formed. Of the two possible choices of ark(q), that one was taken which made 
lar(p -h, h)) - ark(p, 4)) least. In all cases, the ambiguity was resolved within the 
computer. [Part of this coarse tabulation will be published in book form at a future 
date.] For the higher orders, it was necessary to carry the calculations considerably 
beyond p = 100, in order to explore regions containing singularities. 

A necessary and sufficient condition for a singular point is that both the real and 
imaginary components of FB(q) equal zero. It was therefore only necessary to 
inspect the tabulations for changes in sign of FB1, and to note whether FB2 also 
changed sign within the same region. This inspection did not require a computer. 

Phase 2. This consisted of a more elaborate routine, carried out with double-pre- 
cision arithmetic around the region in the (p - 4) plane where a double point was 
expected. It will be easiest to give an example. 

* In the case of odd orders, this choice was also made on the 90'-ray. 
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Example. Even periodic solutions, r = 4. An examination of the coarse tabulation 
showed that there is a double point in the range 17.6 < p < 18.8, and 350 > 4 > 250. 
The "critical" region read into the computer was processed, and in a second attempt, 
the 4-region was reduced to 

Oo = 30.50 (initial value of 4), 4) = 290 (final value of 4). 
P0 = 17.6, initial value of p, pi = 18.8, final value of p. 
h = Ap = .05, A/) = -.050. 
The computation began with the first ray, 4 = 30.50. On that ray, a4(q) and 

a6(q) were generated simultaneously, beginning with p = 0, by the method ex- 
plained in Section 2. [In this region, no singularity connecting these two orders 
exists.] Beginning with p0 a new method was used for extrapolating an approxima- 
tion to a4(q) and a6(q), since these functions are not smooth near the expected 
singularity. In this range the extrapolation was on the functions FA (q) and FB(q); 
not on ar(q) and ar+2(q). From the extrapolated values of FA and FB, ar? and 
ar+2 (the first approximation) was obtained through (2.30) and (2.31). Let 

U = jar(P- h, 4)) -ar02 + jar+2(P-h, 4)) - ar+ 22; 

the sign of r in (2.30) was chosen so that U was the lesser of the two values of U. If 
both values of U were the same, the first r tested was assigned. Since convergence 
of the successive iterations guaranteed that the final value obtained was an eigen- 
value, to within an assigned tolerance, the possible ambiguity of the initial approxi- 
mation could only mean that the value might have converged to ar+2(q) rather than 
to ar(q). Such a situation would not affect the eventual determination of the double 
point. With this initial approximation, either (2.02)-(2.03) or (2.05) was used, de- 
pending on the magnitude of JT,j. In practice the initial approximation started 
with the computation of ar+2(q). Once this value was obtained to within the required 
accuracy, the extrapolated value of FA (q) and the known value of ar+2(q) deter- 
mined the initial approximation for arO. At the interval chosen, the extrapolated 
value of FA (q) was good to at least 4 decimal places-in many cases it was good to 
8 decimals. This assured that the initial approximation would converge to the 
companion-eigenvalue, ar. A test was made after ar(q) was obtained. If FA(q), as 
computed from the generated values of ar+2(q) and ar(q), differed by more than a 
preassigned, close tolerance from the extrapolated value of FA(q), this value of ar 
was discarded, and the value obtained from extrapolation was entered. A warning 
was read out, for a posteriori examination. [It turned out that in practice, no such 
warnings were read out in the computations leading to the published eigenvalues.] 
Another test was made upon the set ar+2(q), ar(q). Such a test was necessary, since 
close to a singular point, an initial approximation to ar+2(q) might indeed have 
converged to ar(q). This test consisted of the following. 

Let 

U, = jar+2(P- h, 4) -ar+2(P, 4))12 + jar(P- h, 4)) - ar(p, 4)12)2 

U2 = Iar+2(P- h, 4)-ar(p, 4))12 + jar(P- h, 4) - ar+2(P, 4)12)2 

Whenever U, ? U2, the values ar+2(q) and ar(q) were accepted. Whenever this was 
not true, the subscripts were interchanged, and a warning to this effect was read 
out. In practice, there were several such interchanges. Examination of the final 
results indicated that the interchange was indeed necessary. 
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Once a set ar+2(q) and a,(q) was computed, the associated values of FA (q) and 
FB(q) were obtained and stored. For a fixed 4, the stored values of FB1 were tested 
for a change of sign, as successive values of p were entered in the tabulation. Once 
a change of sign was noted, tabulation continued until there were at least 9 values 
in storage, with at least 4 values beyond the sign change. When that was available, 
Aitken's method was used to compute p8 where FBi(p,) = 0. Corresponding to this 
value of p, values of ar(ps,, 4) and ar+2(Ps,, 4) were generated from first principles, 
and corresponding value of FB2 was obtained. This ended the computations for that 
particular value of 4. The interpolations were made with both 8-point and 7-point 
formulas, and both sets of results were stored. The computations then proceeded 
to the next 4 of the grid. When at least 4 values of 4) had been stored, the values of 
FB2(ps, 0j) were tested for a change in sign. Once a change in sign was noted, only 
4 additional values of 4 were processed. The value of 4)d for which FB2(p,, 4) = 0 
was again obtained by Aitken's method. Once 4)d was obtained, the corresponding 
value of Pd at the double point was again obtained by Aitken's method, from inter- 
polation in the tabulated values of Ps. In a similar manner, FA(Pd, Pd) was obtained 
by interpolation. The value of ar(q) = ar+2(q) = FA(Pd, 4)d) was read out, along 
with corresponding values of To, T1, T2. Table 1, which follows, shows the behavior 
of the functions p,(q5) and of FB2(p,, 4)) for the present example, along with the 
interpolated values of Od, Pd, and ar(q) at the double point. In all cases, acceptably 
small values of I T11 were noted. 

Two further checks were performed. Whenever the interpolations by the 8-point 
and 7-point formulas differed before the 9th decimal place, they were discarded, and 
a finer grid in p, 4) or both was processed. In addition, the following functions were 
differenced, by ordinary or divided differences: 

Argument Dependent function Type of differences 

FB2(ps 4) 4) Divided differences 
4) P8(4)) Ordinary differences 

4) FA1 and FA2 Ordinary differences 

The numerically largest differences, of orders 2, 4, 6, 7, 8 were read out of the com- 
puter for a posteriori examination. Whenever the 8th difference would have affected 
the 8th decimal place of the final result, the computations were discarded, and a 
finer grid was processed. 

TABLE 1. Computations relating to a4(q) a6 (q) 

4 (in degrees) P8(4) PB2(ps, 4) 
[At (ps, 4), FB,(p,y 4) = 0.] 

30.50 17.82825 50422 -4.74878 03757 
30.45 17.85118 76733 -3.37330 03697 
30.40 17.87436 99065 -1.98690 50855 
30.35 17.89780 70715 -0.58930 72418 
30.30 17.92150 46855 +0.81979 12146 
30.25 17.94546 84630 +2.24069 96596 
30.20 17.96970 43251 +3.67373 93790 
30.15 17.99421 84104 +5.11924 41945 
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Interpolated values: 
At double point 

?d =30.32903 890790; Pd - 17.90770 95980, 

a4(q) = a6(q) = 33.54015 64324 + i 6.36251 87840, 

T(a, q) = .6(10-15) + i.35(10-14); Ti(a, q) = .51(10-15) + i.32(10o-4) 

T2(a, q) = - .00186 - i.0178. 

Note. Within the computer, all values were listed to 15 significant figures. The 
above table lists only ten decimals, and only the order of magnitude of Tk(a, q), 
k = 0, 1, 2. 

TABLE 2 
Double points of Mathieu's equation, associated with even periodic solutions. 

a (q) 
r $ (degrees) r J?___L________ r+2 

Real Part Imag. Part 

0 90. 1.46876861 2.08869890 0.0 2 

1 59.18208061 3.76995749 6.17647404 1.23177966 3 

2 44.60975039 7.26814689 12*79971624 2.76304492 4 

3 36.02304851 11*97821151 21.92533616 4.49002890 5 

4 90. 16.47116589 27.31912767 0.0 6 

4 30.32903891 17.90770960 33.54015643 6.36251878 6 

5 77.74433895 22.85524712 38.40883857 2.53293279 7 

5 26.26120049 25.06087566 47.63741382 8.35068598 7 

6 68.63569460 30.42738210 52.02534500 5.55189444 8 

6 23.20168'627 33.44030379 64.21313050 10.43474552 8 

7 61.57215455 39.19378450 68.15680853 8.96150250 9 

7- 20.81211404 43.04769498 83.26475268 12.60061661' 9 

8 90. 47.80596570 80.65826424 0.0 10 

8 55.91955555 49.16014417 86.79479850 12.69861754 10 

8 18.89115596 53.88422425 104.79053631 14.83777144 10 

9 82.35333500 58.27413845 98.76912388 3.83025506 11 

9 51.28456166 60.33123310 107.93306428 16.71813422 11 

9 '17.31131065 65.95073725 128.78923395 17.13804526 11 

10 76.00421757 69.92930518 119.40038738 8.20296334 12 

10 47.40927141 72.71097078 131*56682190 20.98611513 12 

10 15.98778925 79.24786295 155.25992075 19.49492409 12 

11 70.63818332 82.77468530 142.54619965 -13.04302555 13 

11 44.11709801 86.30257222 157.69231520 25.47604566 13 

11 14.86194679 93.77608193 184.20189088. 21.90309228 13 
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TABLE 2-Continued 

a (q) 
r d (degrees) r _ rf 2 

Real Part Imag. Part 

12 90. 95.47527271 162.10702112 0.0 14 

12 66.03683674 96.81379444 168.20157306 18.29431821 14 

12 41.28283447 101.10868908 186.30653256 30.16660867 14 

12 13.89188815 109.53576981 215.61459283 24.35813133 14 

13 84.44343693 110.02736921 187.24248763 5.12750451 15 

13 62.04316195 112.05003644 196.36226473 23.91319567 15 

13 38.81510667 117.13152570 217.40701681 35.04027512 15 

13 13.04686266 126.52722577 249.49758698 26.85631162 15 

14 79.59090305 125.76627897 214.89467225 10.82481143 16 

14 58.54107283 128.48655463 227.02465063 29.86467710 16 

14 36.64559325 134.37293031 250.99173315 40.08236608 16 

14 12.30377417 144.75069208 285*85051698 29.39444380 16 

15 75.311]92241 142.'69395383 245.06010153 17.03092757 17 

15 55.44272850 146.12619098 260.18561672 36.12005618 17 

15 34.72213986 152.83446572 287.05897499 45.28040307 17 

15 11.64492867 164.20636770 324.67308978 31.96977006 17 

TABLE 3 
Double points of Mathieu's equation, associated with odd periodic solutions. 

b (q) r 
r J (degrees) x. 2 

Real Part Imag. Part 

2 90. 6.92895476 11.19047360 0.0 4 

3 72.46057467 11.27098527 18.77370055 1.88381571 5 

4 60.97874908 16.80308983 28.88860879 4.19467426 6 

5 52.82618856 23.53467876 41.51634588 6.82630952 7 

6 90. 30.09677284 50.47501616 0.0 8 

6 46.71423788 31.47295165 56.64571353 9.71571559 8 

7 80.58233121 38.52292501 65.07456904 3.18163148 9 

7 41.94897328 40.62318483 74.26939582 12.82090012 9 

8 73.08912353 48.13638186 82.19724671 6.88343235 10 

8 38.12170543 50.98928567 94.38230111 16.11176782 10 

9 66.96914596 58.94150633 101.83496931 11.02097811 -11 
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TABLE 3-Continued 

F r I # (degrees) Ib(q) I r2 
Real Part Imag. Part 

9 34.97532055 62.57420650 116.98071992 19.56564754 11 

10 90. 69.59879328 117.86892416 .0.0 12 

10 61.86698774 70.94273869 123.98133068 15.53425785 12 

10 32.33961544 75.38022473 142.06185385 23.16482626 12 

11 83.56378920 82.10894361 139.49186015 4.47887410 13 

11 57.54201185 84.14413219 148.63118156 20.37826431 13 

11 30.09725025 89X40913113 169.62353277 26X89507274 13 

12 78.06133695 95.80595671 163.63313127 9.51589661 14 

12 53.82495450 98.54925096 175X78032210 25.51790587 14 

12 28.16459857 104.66235807 199.66403556 30.74469753 14 

13 73.29652000 110.69230161 190X28830309 15X04368354 15 

13 50.59302351 114.16118710 205.42527964 30.92500454 15 

13 26X48038795 121.14106880 232*18197149 34.70392490 15 

14 90. 125.43541131 213.37256864 0.0 16 

14 69.12577961 126.77081443 219.45339815 21.00996902 16 

14 47.75482811 130.98261358 237.56314715 36.57640523 16 

14 24.99865911 138.84622074 267.17619891 38.76445692 16 

15 85.11157324 142.02943128 242.02085606 5.77614871 17 

15 65.44128256 144.04436333 251.12488713 27.37294857 17 

15 45.24085886 149.01584316 272*19146415 42*45272306 17 

15 23.68423768 157.77861135 304*64576791 42*91916094 17 

The entries in Table 3 show that bi(q) has no double points when q is in the first. 
quadrant of the complex plane. However, since bl(-q) = ai(q), there is a double- 
point of bi(q) in the third quadrant-and also its conjugate in the second quadrant. 
From the present tabulation, it is now known for the first time that the power series. 
expansions for ai(q) and a3(q) converge up to p = 3.7699. . . Similarly, one may- 
obtain the limit of convergence of the power series for orders up to 15 from the 
present tabulation. 

If one rearranges the values in Tables 2 and 3, listing the first double point, the 
second point, etc., it seems plausible that all the double points have been obtained 
for orders less than or equal to 15. However, there is as yet no mathematical proof 
of this conjecture. It is hoped the present tabulation will aid in obtaining more- 
accurate asymptotic approximations in the various regions of the complex plane. 
With the aid of these, it may be possible to describe more completely the behavior 
of the eigenvalues for large values of I ql. 
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